


CARPINTERIA VALLEY WATER DISTRICT

2018 CONSUMER CONFIDENCE REPORT

Vital Information on Water Quality for Residents of the Carpinteria Valley

In 2018, the District met and currently meets or exceeds all state and federal drinking water standards. For questions or concerns about this report please call General Manager, Robert McDonald or Operations Manager Greg Stanford at the District office at (805) 684-2816.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

Winter rains brought Lake Cachuma levels to 80% of capacity and a chance for local ground water supplies to recover. Photo courtesy of County of Santa Barbara County Public Works Department.

Carpinteria Valley Water District's Annual Water Quality Report 2018

The data noted in the tables identifies all the drinking water contaminants that were detected during the 2018 calendar year. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table are from testing done January 1 through December 31, 2018. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

REGULATED CONTAMINANTS WITH PRIMARY MCLS, MRDLS OR NLS					GROUNDWATER CVWD WELLS				OF SA	CE WATER NTA BARBARA ITMENT PLANT	MAJOR SOURCES OF CONTAMINATION	
CONTAMINANTS	UNITS	PHG (MCLG)	MCL (MRDL), NL		NGE CTED	REPORTING VALUE ₁	LAST DATE SAMPLED	RANGE REPORTIN DETECTED VALUE		REPORTING VALUE ₁	IN DRINKING WATER	
MONITORE	d at wa	TER SOU	RCE	LOW	HIGH			LOW	HIGH			
Turbidity	NTU	NA	TT=1 NTU	NA	NA	NA	NA	0	0.1	Highest Single Measurement 0.10	Natural Sediment; soil run-off	
	TT=95% of samples ≤0.3 NTU		Samples ≤ 0.3 NTU 100%									
INORGANIC CONTAMI	NANTS											
Aluminum	ppm	0.6	1	ND	ND	ND	2018	ND	0.06	0.03	Erosion of natural deposits.	
Arsenic	ppb	0.004	10	ND	ND	ND	2018	ND	4.5	2.3	Erosion of natural deposits.	
Barium	ppm	2	1	ND	ND	ND	2018	ND	ND	ND	Erosion of natural deposits.	
Fluoride (F)	ppm	1	2	0.2	0.3	0.23	2018	ND	0.45	0.33	Erosion of natural deposits.	
Nitrate as N (nitrogen)	ppm	10	10	2.2	3.1	2.6	2018	NA	NA	NA	Erosion of natural deposits: runoff and leaching from fertilizer use; leaching from septic tanks and sewage.	
Perchlorate	ppb	1	6	ND	ND	ND	2018	NA	NA	NA	Municipal nd industrial waste discharges; environmental contamination from aerospace or industrial operators that used, stored, or dispose perchlorate and its salts.	
Hexavalent Chromium CrVI	ppb	NA	NA	ND	ND	ND	2018	NA	NA	0.022	Erosion of natural deposits; Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing.	
Chromium (Total Cr)	ppb	(100)	50	ND	ND	ND	2018	ND	1.7	0.54	Erosion of natural deposits; discharge from steel and pulp mills and chrome plating.	
RADIOACTIVE CONTAN	/INANTS	5	· · · · ·									
Gross Alpha Particle Activity	pCi/L	(0)	15	2.48	4.38	3.16	2018	NA	NA	ND	Erosion of natural deposits.	
Uranium	pCi/L	0.43	20	NA	NA	NA	NA	ND	1.5	1.1	Erosion of natural deposits.	
VOLATILE ORGANIC CO	ONTAMIN	ANTS										
Methyl- <i>tert</i> -butyl ether (MTBE)	ppb	13	13	ND	ND	ND	2018	NA	NA	NA	Leaking from underground gasoline storage tanks, discharge from petroleum and chemical factories	
			ΜΟΝΙΤΟ	DRED IN	THE DI	STRIBUTION S	SYSTEM OR A	T DESIG	GNATED	POINTS OF USE		
MICROBIOLOGICAL CO	NTAMIN	IANT SAN	MPLES									
Total Coliform Bacteria	Sample	0	1 positive monthly sample	ND	ND	ND	2018	NA	NA	Highest % of Positives 0.00%	Naturally present in the environment.	
DISINFECTION BYPROD	DUCTS, D	ISINFECT	TION RESIDUALS	, AND I	DISINFE	CTION BYPRO	DUCT PRECU	RSORS	- SYSTE	W WIDE AVERAGE		
Total Trihalomethanes - TTHM2	ppb	NA	80	9	82	57	2018	NA	NA	NA	By-product of water chlorination.	
Haloacetic Acids 5 - HAA52	ppb	NA	60	ND	18	18	2018	NA	NA	NA	By-product of water chlorination.	
Chlorine Residual	ppm	4	4	0.5	1.7	1	2018	NA	NA	NA	Used to disinfect potable water.	
Bromate	ppb	0.1	10	NA	NA	NA	NA	3.2	5.7	4.5	By-product of water chlorination.	
Control of Disinfection Byproducts Precursors (DBP) Total Organic Carbon (TOC)	ττ	NA	Π	NA	NA	NA	NA	ND	3.21	2.72	TOC has no known adverse health effects and provides a medium for the formation of disin- fection by-products. Sources include plant decay and other natural processes. Sample taken at City of Santa Barbara Cater Treatment Plant.	

CMMANNANE UNITY MAX MAX <th< th=""><th colspan="5">REGULATED CONTAMINANTS WITH SECONDARY MCLS, MRDLS, OR NLS</th><th></th><th>OUNDWATI</th><th></th><th colspan="3">SURFACE WATER CITY OF SANTA BARBARA CATER TREATMENT PLANT</th><th></th><th>OR SOURCES NTAMINATION</th></th<>	REGULATED CONTAMINANTS WITH SECONDARY MCLS, MRDLS, OR NLS						OUNDWATI		SURFACE WATER CITY OF SANTA BARBARA CATER TREATMENT PLANT				OR SOURCES NTAMINATION	
CHOOM Figh Vacuum High Vacuum High Vacuum High Vacuum High Vacuum High Vacuum High Calculate Galo Sole So	CONTAMINANTS	UNITS				RANGE REPORTING DATE RANGE REPORTING								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Monitored at Water Source				А	esthetic Sta	andards Es	of Public Health.						
Color unit NA 15 ND ND ND AUD AU					Low	High			Low	High				
Copper ppn NA 1 ND ND ND ND 2018 NA	Chloride (Cl)	ppm	NA	500	30	52	39	2018	33	140	60	Leaching of natu	ral deposits.	
copper l <thl> l <thl>l <thl>l <thl>l</thl></thl></thl></thl>	Color	units	NA	15	ND	ND	ND	2018	ND	26	19	Natural occurrin	g organic materials.	
Manganese pp NA 50 ND ND ND ND 2018 NA NA Mature counting organic materials, counting organic mater	Copper	ppm	NA	1	ND	ND	ND	2018	NA	NA	NA	Internal corrosio plumbing system	Natural occurring organic materials. Internal corrosion of household water plumbing systems and erosion of natural deposits.	
indication n	Iron	ppb	NA	300	ND	ND	ND	2018	ND	21	14	Leaching of natu	ral deposits.	
Substrates MR MR <	Manganese	ppb	NA	50	ND	ND	ND	2018	NA	NA	NA	An aesthetic con		
Siltare (SO4) ppm NA 500 111 18 125 2018 23 335 210 Subtances that form ions in water. Odor ToN NA 3 ND ND ND ND 2018 2218 22 3 3 Nutral occurs or gance materials in solution. Total Disolved Solds ppm NA 100 550 570 560 0.40 2218 2018 270 8.00 8.05 Rutral obcurs or gance materials in solution. Total Disolved Solds ppm NA 100 0.00 0.01 2018 NA N No No 100 NO		ppb	NA	500	ND	ND	ND	2018	NA	NA	NA	Foaming agents	Foaming agents found in detergents.	
Odor Nn Nn <	Specific Conductance	us/cm	NA	1600	844	887	867	2018	550	1050	867	Run-off/leaching	of natural deposits.	
oddr NN NN <	Sulfate (SO4)	ppm	NA	500	111	138	125	2018	2.3	335	210	Substances that	Substances that form ions in water.	
Turbidity, Laboratory NTU NA 5 0.4 0.5 0.4 2018 0.05 0.16 0.09 Natural river sediment; soli run off. Zinc ppm NA 5 ND ND ND 2018 NA NA NA NA Industrial waste. UNREGULATED CONTATIONATIS WILE ND ND ND 2018 NA NA 0.85 Ension of natural deposits. pH Std Units NA NL=1 ND ND ND 2018 NA NA Varies in water of oracural deposits. of all Alkalinity as CaCO3 ppm NA NA 312 313 338 2018 518 476 330 deaching of natural deposits. Total Alkalinity as CaCO3 ppm NA NA 52 29 27 2018 51 205 170 deaching of natural deposits. Calcium ppm NA NA 25 29 27 2018 51 800	Odor	TON	NA	3	ND	ND	ND	2018	2	3	3	An aesthetic con	Natural occurring organic materials. An aesthetic concern; causes objectionable taste and odor	
Zinc pm NA 5 ND ND ND 2018 NA NA NA Industrial waste. UNREGULATED CONTUNENT ND ND ND 2018 NA NA NA NA NA Industrial waste. Boron pm NA NL=1 ND ND ND 2018 NA NA 0.85 Erosion of natural deposits. pH Std NA NL=1 ND ND ND 2018 NA NA 0.85 Erosion of natural deposits. total Mardenes as CaCO3 ppm NA NA 312 338 2018 58 476 330 Leaching of natural deposits. Total Mardenes as CaCO3 ppm NA NA 312 280 921 2018 51 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205	Total Dissolved Solids	ppm	NA	1000	550	570	563	2018	270	804	595	Run-off/leaching	Run-off/leaching of natural deposits.	
NA N	Turbidity, Laboratory	NTU	NA	5	0.4	0.5	0.4	2018	0.05	0.16	0.09	Natural river sed	Natural river sediment; soil run-off.	
Image: bit is a stand by the stan	Zinc	ppm	NA	5	ND	ND	ND	2018	NA	NA	NA	Industrial waste.	Industrial waste.	
pH Std Units NA NA NA 7.7 7.8 7.7 2018 7.50 9.03 7.76 $Varies in water0-6-adic, since Varies in water0-6-adic,$	UNREGULATED COM			NO MCLS										
PH Still NA NA NA 7.7 7.8 7.7 2018 7.50 9.3 7.7 9.3 9.3 9.7 9.3	Boron	ppm	NA	NL=1	ND	ND	ND	2018	NA	NA	0.85	Erosion of natura	al deposits.	
Total Alkalinity as CaCO3 ppm NA NA 250 280 267 2018 51 205 170 Leaching of natural deposits. Calcium ppm NA NA 84 96 91 2018 210 100 79 Leaching of natural deposits. Magnesium ppm NA NA R4 96 91 2018 1.4 45 30 Leaching of natural deposits. Sodium ppm NA NA R4 96 91 2018 51 20 30 Leaching of natural deposits. Sodium ppm NA NA R4 96 91 2018 3.8 5.1 4.4 60 Leaching of natural deposits. Otassium ppm NA NA 1 1 1 2018 3.8 5.1 4.4 4.5 4.4 4.5 4.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	рН		NA	NA	7.7	7.8	7.7	2018	7.50	9.03	7.76	0-6=acidic, 7=neutral	0-6=acidic, 7=neutral	
Calcium ppm NA NA 84 96 9 2018 21 106 79 Leaching of nuture Magnesium ppm NA NA 23 29 27 2018 1.4 45 30 Leaching of nuture Leaching of nuture <td>Total Hardness as CaCO3</td> <td>ppm</td> <td>NA</td> <td>NA</td> <td>312</td> <td>351</td> <td>338</td> <td>2018</td> <td>58</td> <td>476</td> <td>330</td> <td>Leaching of natu</td> <td>ral deposits.</td>	Total Hardness as CaCO3	ppm	NA	NA	312	351	338	2018	58	476	330	Leaching of natu	ral deposits.	
Magnesium ppm NA NA Z2 29 27 2018 1.4 $I = 0$	Total Alkalinity as CaCO3	ppm	NA	NA	250	280	267	2018	51	205	170	Leaching of natu	ral deposits.	
Sodium ppm NA NA 35 61 51 2018 51 80 60 Leaching of nature deposits. Potassium ppm NA NA 1 1 1 2018 3.8 51 80 60 Leaching of nature deposits. Vertassium ppm NA NA 1 1 1 2018 3.8 5.1 4.4 Leaching of nature deposits. UNREGULATED CONTAMINANTS MONTORITORITORITORITORITORITORITORITORITORI	Calcium	ppm	NA	NA	84	96	91	2018	21	106	79	Leaching of natu	Leaching of natural deposits.	
Potassium ppm NA NA 1 1 2018 3.8 $\overline{2}$.0 $\overline{4}$ Leaching of nucleopsis. UNREGULATED CONTAMINANTS MOVIDATION SUPPRINTS WONTON SUPPRINTS SPACE SUP	Magnesium	ppm	NA	NA	25	29	27	2018	1.4	45	30	Leaching of natu	ral deposits.	
NREGULATED CONTAMINANTS MONITORING (UCMR3) LIST 1 GROUNDWATER CUMPATER CUMPAT	Sodium	ppm	NA	NA	35	61	51	2018	51	80	60	Leaching of natu	Leaching of natural deposits.	
DNREGOLATED CONTAMINANTS MONTIORING (UCMRS) UST 3 CONTAMINANTS MONTIORING (UCMRS) UST 3 CONTAMINANTS MONTIORING (UCMRS) UST 3 PHG (MCLG) MCL (MRDL),NL Embed between the second	Potassium	ppm	NA	NA	1	1	1	2018	3.8	5.1	4.4	Leaching of natu	ral deposits.	
CONTAMINANTSUNITSPHG (MCLG)MMCL (MRDL), NLDETECTREPORTING VALUELAST DATE SAMPLEDChlorate γ ppbNANL=800864102152015Molybdenum γ ppbNANANA1.23.005.12015Strontium ρ pitNANA72087077320151,2,3-Trichloropropane ρ ptNA σ σ σ σ σ σ	UNREGULATED COI		ANTS MOI	NITORING (L	ICMR3) L	IST 1								
Molyber <t< td=""><td colspan="4">CONTAMINANTS</td><td>INITS</td><td colspan="2"></td><td></td><td></td><td colspan="2">DETECTED</td><td></td><td>LAST DATE SAMPLED</td></t<>	CONTAMINANTS				INITS					DETECTED			LAST DATE SAMPLED	
Strontium pCi/L NA NA 720 870 773 2015 1,2,3-Trichloropropane ppt NA 5 ND ND ND 2018	Chlorate				ppb	NA		NL=800	86	4	10	215	2015	
1,2,3-Trichloropropane ppt NA 5 ND ND ND 2018	Molybdenum				ppb	NA		NA	NA 1.2		3.0	5.1	2015	
	Strontium				oCi/L	NA		NA	720	8	370	773	2015	
	1,2,3-Trichloropropane				ppt			5	ND		ND	ND	2018	
Vanadium ppb NA NL=50 1.0 4.7 2.2 2015	Vanadium				ppb	NA		NL=50	1.0		4.7	2.2	2015	

LEAD AND COPPER RULE Monitored at the Customer's Tap

30 sites sampled in 2016 0 samples exceeded the action levels for copper and lead. Reporting level is equal to 90th percentile of all 30 samples Number of school sites requesting lead sampling in 2018: 0

CONTAMINANTS	UNITS	PHG (MCLG)	AL	RANGE DETECTED		-		REPORTING VALUE	LAST DATE SAMPLED	MAJOR SOURCES OF CONTAMINATION IN DRINKING WATER
Lead	ppb	NA	AL=15	LOW	HIGH	1.13	2016	Internal Corrosion of of household water plumb-		
				ND	3.20					
Copper	ppb	NA	AL=1.3	0.003	0.540	0.207	2016	ing systems and erosion of natural deposits		

LEAD IN PLUMBING: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Carpinteria Valley Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the EPA's website at: http://www.epa.gov/safewater/lead.

WHERE YOUR DRINKING WATER COMES FROM

Groundwater: All subsurface water found underground in cracks and spaces in soil, sand and rock. The area where water fills these spaces is the saturated zone, the top of this zone is called the water table.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The level of a disinfectant (chlorine) added for water treatment that may not be exceeded at the customer's tap.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a disinfectant (chlorine) added for water treatment at which there is no known or expected risk to health. MRDLGs are set by the USEPA.

Notification Level (NL): Notification levels are health-based levels established by CDPH for chemicals in drinking water that lack MCLs.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standards (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers a treatment or other requirement which a water system must follow.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of drinking water. Secondary Contaminants are not based on health effects at MCL levels.

Surface Water: All water open to the atmosphere and subject to surface runoff such as lakes, reservoirs and rivers. Water from Lake Cachuma and Gibraltar Reservoir is treated at the William B. Cater Water Treatment Plant.

Treatment Technique (TT): A required process intended to reduce the level of contaminant in drinking water.

LEGEND

Symbol "<"	denotes 'less than'
ppb	parts per billion
ppm	parts per million
µmho/cm	Micro mhos per centimeter
ng/L	nanogram per liter (parts per trillion)
pCi/L	Picocuries per liter (a measure of radiation)
NA	Not Applicable
ND	Not detected at testing limit
NTU	Nephelometric Turbidity Units
None	None Required

BOARD MEETINGS

Carpinteria Valley Water District is governed by a five member Board of Directors elected by you, the customers. The Board meetings may be held on the second and fourth Wednesday of every month at 5:30 p.m. at Carpinteria City Hall, 5775 Carpinteria Avenue.

The Board may also hold regular meetings other Wednesdays of the month at 5:30 p.m. at the District Offices, 1301 Santa Ynez Avenue.

The Board agenda is posted by the front door of the office three days prior to the meeting and on the District website, **cvwd.net**.

FREQUENTLY ASKED QUESTIONS

Is my drinking water pure?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at 1-800-426-4791.

zHow can I know that my drinking water is safe?

In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board (SWRCB) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. SWRCB regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

Is there a risk to Immuno-compromised persons?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

What types of contaminants can be found in drinking water, including bottled water?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water (prior to treatment) include:

Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, animal waste, fertilizer and farming operations.

Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

WATER SOFTENER SETTINGS: The District's water has a hardness range of **18 to 28 grains per gallon**. One grain per gallon equals **17** milligrams per liter.

SOURCE WATER ASSESSMENT: The Source Water Assessment for Carpinteria Valley Water District was completed in 2003. A copy of the complete assessment is available at the Carpinteria Valley Water District Office, 1301 Santa Ynez Ave., Carpinteria, CA 93013.

Keep Saving Carpinteria!

On May 22, 2019, the Carpinteria Valley Board of Directors adopted Ordinance 19-2, lowering the Stage 2 Drought Condition to Stage 1 Water Shortage Conditon. The District requests a continued **voluntary reduction in water usage by 15%** to help ensure adequate water supplies for the Carpinteria Valley until supplies are fully replenished.

Summary of Stage 1 Water Shortage Condition

- Hoses must be equipped with an automatic shut-off nozzle when in use.
- Breaks and leaks must be repaired upon discovery.
- Irrigating of turf or ornamental landscape during and within 48 hours following measurable rainfall is prohibited.
- Run-off caused by irrigation is prohibited.
- Washing down driveway, sidewalk or other paved surface with a garden hose is prohibited.
- Boats and vehicles should be washed at a commercial car washing facility or by using a bucket and/or a hose with a shut-off nozzle.
- Decorative fountains or water features must be equipped with recirculating pumps.
- Restaurants are encouraged to only serve water upon specific request from the customer.
- Hotels, motels and other commercial lodging establishments must post in each room water conservation information and actions.

The District provides FREE Water Saving Surveys and offers rebates for Water Wise Landscapes and high efficiency fixtures. To learn more, Visit CVWD.net/water_conservation/rebates.htm or call 805-684-2816 ext. 116