

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

COMMUNITY PARTICIPATION

Regularly scheduled Board meetings may be held on the second and fourth Wednesday of every month at 5:30 p.m. at Carpinteria City Hall, 5775 Carpinteria Avenue. A public comment period is held during each meeting

Board meeting agendas are posted by the front door of the District office the Friday prior to the Regular Board meeting and on the District website, <u>www.cvwd.net</u>. Meetings can be watched live and are recorded for later viewing.

BOARD OF DIRECTORS

Case VanWingerden - Division 4 Board President

Shirley Johnson - Division 5 Board Vice-President

Casey Balch - Division 3 Board Director

Polly Holcombe - Division 2 Board Director

Matthew Roberts - Division 1 Board Director

If you would like a paper copy of this report mailed to you, contact the District at <u>info@cvwd.net</u> or phone 805-684-2816.

The District continues to be committed to helping customers use water efficiently. The District's smart meters deliver water consumption information to the online and mobile app, <u>EyeOnWater®</u>,

With <u>EyeOnWater</u>[®] customers are able to **catch leaks in days** instead of months, monitor their consumption, customize alerts for high usage, and compare current use to previous use.

Sign up at <u>https://eyeonwater.com/signup</u> or scan the QR code, enter your account number, including the dashes and start saving today!

June 2023

Dear Carpinteria Valley Residents,

Carpinteria Valley Water District is pleased to present you with this Annual Drinking Water Consumer Confidence Report for the 2022 calendar year.

The District in 2022 met and currently meets all state and federal drinking water quality standards.

The water quality of the District's delivered supplies to its customers continues to meet or exceed the requirements of the safe drinking water regulations in large part due to the investments made in our water system over the past 25 years. These include covering of Carpinteria and Ortega reservoirs, upgrading treatment processes at the Cater treatment plant, developing treatment systems at our local water storage facilities and providing a way to blend local groundwater with imported water supplies more effectively. These improvements were costly and seemed a burden on CVWD customers at the time. However, in retrospect, the fact that I can say we have addressed Disinfection By-Product (DBPs) issues in our water system, demonstrated by the fact that DBPs have been below the regulatory limits consistently over the past 15 years, is an indication that it was the right decision to invest in these improvements.

While safe drinking water continues to be a top priority at CVWD, a new challenge emerged in 2013 lasting through 2022. This challenge was an **extreme drought**, which threatened CVWD's mission to reliably deliver water to customers. Fortunately, in the last winter the entire State of California including Carpinteria received above average rainfall essentially refilling water storage reservoirs, restoring rivers, and providing significant snowpack to supply water needs through out the state for the rest of 2023 and perhaps beyond. Unfortunately, one water resource system that did not recover like the other resources is groundwater. Groundwater basins recover with rainfall through a process called percolation which happens at a slower rate relative to other water resources systems like lakes and rivers.

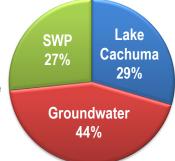
During this drought the Carpinteria Groundwater Basin (CGB) was utilized by the District and local farmers to provide much needed water as other supplies dried up. Because of this and the slow rate of recharge the CGB has not recovered from the effects of the 2013- 2022 drought and will likely not be fully recovered for years. In order to help the CGB recover, the District will reduce its pumping for a period of time to allow recovery to happen faster. In addition to the reduction in pumping, the District is working on a new water supply project called the Carpinteria Advanced Purification Project (CAPP) that will provide a drought proof water supply that will help to make sure we have enough water during future droughts. The CAPP will capture wastewater currently discharged to the ocean by the Carpinteria Sanitary District, purify it and inject it into the Carpinteria Groundwater Basin. CAPP will use available space in the Carpinteria Groundwater Basin to store water until it is needed for water supply. The District looks forward to better water supply reliability in the near and long term because of the recent winter and projects like the CAPP.

If you have any questions or concerns about this report please call me or Operations Manager Greg Stanford at the District office at (805) 684-2816.

Sincerely,

Bob McDonald General Manager

In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board (SWRCB) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. SWRCB regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.


Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791

DRINKING WATER SOURCES AND EDUCATIONAL INFORMATION

Carpinteria's water supply portfolio is comprised of three sources: groundwater pumped from the Carpinteria Groundwater Basin and surface water supplies from the Cachuma Project *and* the State Water Project.

In 2022, the District received and produced approximately 4300 acre feet (AF) of water for the Carpinteria Valley. The pie chart, at right, shows the percentage received for each of the three sources.

SOURCE WATER ASSESSMENT:

The Source Water Assessment for Carpinteria Valley Water District was completed in 2003. A copy of the complete assessment is available at the Carpinteria Valley Water District Office, 1301 Santa Ynez Ave., Carpinteria, CA 93013.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at 1-800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water (prior to treatment) include:

Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, animal waste, fertilizer and farming operations.

Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

STAGE 1 DROUGHT CONDITION WATER USE REGULATIONS:

Ordinance 23-1 declaring Stage 1 Drought Condition, was adopted on April 26, 2013. Listed below are some of the current regulations in place.

- · Breaks and leaks must be repaired upon discovery.
- Automatic shut-off devices must be attached to any hose or filling apparatus.
- Run-off from landscape irrigation is not allowed to flow onto hardscape areas such as sidewalks, driveways, patios, street gutters, etc.
- Landscapes irrigation is not allowed during or within 48 hours of measureable rainfall.
- Using a hose to wash a building, driveway, sidewalk or other paved surface is not allowed unless authorized by CVWD.
- Irrigation of ornamental turf for Commericial, Industrial and Institutional customers is not allowed.

CARPINTERIA VALLEY WATER DISTRICT - WATER QUALITY TESTING RESULTS FOR 2022

The data noted in the tables identifies all the drinking water contaminants that were detected during the 2022 calendar year. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table are from testing done January 1 through December 31, 2022. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

CONTAMINANTS	UNITS	PHG (MCLG)	MCL (MRDL), NL	RANGE DETECTED	REPORTING VALUE	YEAR TESTED	MAJOR SOURCES OF CONTAMINATION IN DRINKING WATER
INORGANICS							
Aluminum	mg/L	0.6	1	ND	ND	2022	Erosion of natural deposits; residue from some surface water treatment processes.
Arsenic	µg/L	0.004	10	ND	ND	2022	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes.
Barium	mg/L	2	1	ND	ND	2022	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Fluoride	mg/L	1	2	0.20 - 0.40	0.25	2022	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Nitrate as N	mg/L	10	10	2.10 - 2.70	2.30	2022	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits.
Perchlorate	µg/L	1	6	ND	ND	2021	Municipal and industrial waste discharg- es; environmental contamination from aerospace or industrial operators that used, stored, or dispose of perchlorate and its salts.
Chromium (Total Cr)	µg/L	(100)	50	16.0 - 20.0	19	2022	Erosion of natural deposits; discharge from steel and pulp mills and chrome plating.
RADIOACTIVE CONTAMINAN	TS						
Gross Alpha Particle Activity	pCi/L	(0)	15	2.82 - 3.80	3.34	2021	Erosion of natural deposits.
VOLATILE ORGANIC CONTAN	/INANTS						
Methyl-tert-butyl ether (MTBE)	µg/L	13	13	ND	ND	2021	Leaking underground storage tanks; discharge from petroleum and chemical factories.
SYNTHETIC ORGANIC CONT	AMINANT	S					
1,2,3-Trichloropropane	µg/L	NA	0.005	ND	ND	2021	Discharge from industrial and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and mainte- nance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides
MONITORED IN THE DISTRIB	UTION SY	STEM OR	AT DESIGNATED	POINTS OF U	SE - MICROBI	OLOGICAL	CONTAMINANT SAMPLES
Total Coliform Bacteria	Sample	0	1 positive monthly sample	ND	ND	2022	Naturally present in the environment.
DISINFECTION BYPRODUCTS	S, DISINFE	CTION RE	SIDUALS, AND [DISINFECTION	BYPRODUCT F	RECURS	DRS - SYSTEM WIDE AVERAGE
Total Trihalomethanes - TTHM	µg/L	NA	80	9.0 - 73.0	47.5	2022	By-product of water chlorination.
Haloacetic Acids 5 - HAA5 ¹	µg/L	NA	60	ND - 34.0	31.3	2022	By-product of water chlorination.
Chlorine Residual	mg/L	4	4	0.70 - 1.6	1.2	2022	Used to disinfect potable water.

PRIMARY DRINKING WATER STANDARDS - Mandatory Health Related Standards

1. The MCL for HAA5 is based on a site specific four quarter running annual average, where the MAX range for HAA5 is based on a one time site specific sample result, therefore CVWD is not in violation of exceeding the MCL

Carpinteria Valley Water District

SECONDARY DRINKING WATER STANDARDS - Aesthetic Standards Established by the State Water Board.

CONTAMINANTS	UNITS	PHG (MCLG)	MCL (MRDL), NL	RANGE DETECTED	REPORTING VALUE	YEAR TESTED	MAJOR SOURCES OF CONTAMINATION IN DRINKING WATER
Chloride (Cl)	mg/L	NA	500	34 - 84	47	2022	Runoff/leaching from natural deposits; seawater influence.
Color	units	NA	15	5	5	2022	Naturally occurring organic materials.
Copper	mg/L	0.30	1	ND	ND	2022	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.
Iron	µg/L	NA	300	ND	ND	2022	Leaching of natural deposits.
Manganese	μg/L	NA	50	ND	ND	2022	Naturally occurring organic materials; causes discoloration of water and is an aesthetic concern.
Methylene Blue Active Substances -MBAS	µg/L	NA	500	ND	ND	2022	Foaming agents found in detergents.
Specific Conductance	us/cm	NA	1600	874 - 1010	946	2022	Run-off/leaching of natural deposits.
Sulfate	mg/L	NA	500	114 - 245	161	2022	Substances that form ions in water.
Odor - Threshold	TON	NA	3	ND	ND	2022	Naturally occurring organic materials;.causes objectionable taste and odor and is an aesthetic concern.
Total Dissolved Solids)	mg/L	NA	1000	540 - 650	585	2022	Run-off/leaching of natural deposits.
Turbidity, Laboratory	NTU	NA	5	0.40	0.40	2022	Natural river sediment; soil run-off.
Zinc	mg/L	NA	5	ND	ND	2022	Runoff/leaching from natural deposits; industrial wastes
ADDITIONAL CONSTITUENTS							
рН	Std Units	NA	NA	7.1 - 7.9	7.3	2022	Varies in water; 0-6=acidic, 7=neutral, 8-14=alkaline
Total Hardness as CaCO3	mg/L	NA	NA	345 - 387	363	2022	Leaching of natural deposits.
Total Alkalinity as CaCO3	mg/L	NA	NA	180 - 280	243	2022	Leaching of natural deposits.
Calcium	mg/L	NA	NA	78 - 104	93	2022	Leaching of natural deposits.
Magnesium	mg/L	NA	NA	28 - 40	32	2022	Leaching of natural deposits.
Sodium	mg/L	NA	NA	36 - 60	51	2022	Leaching of natural deposits.
Potassium	mg/L	NA	NA	1 - 4	2	2022	Leaching of natural deposits.

WATER SOFTENER SETTINGS:

The District's water has a hardness range of 20 to 23 grains per gallon. One grain per gallon equals 17 milligrams per liter.

LEAD AND COPPER RULE - MONITORED AT CUSTOMER'S TAP

30 sites sampled in 2022. 0 samples exceeded the action levels for copper and lead. Action level is based on 90th percentile of all 30 samples. Number of school sites requesting lead sampling in 2022: 0

Lead	ppb	0.20	AL = 15	1.1 - 2.3	0.002	2022	Internal corrosion of of household water
Copper	ppm	0.30	AL = 1.30	0.020 - 2.74	0.238	2022	plumbing systems and erosion of natural deposits

LEAD IN PLUMBING: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Carpinteria Valley Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the **Safe Drinking Water Hotline at 1-800-426-4791**. It is also available on the EPA's website at: http://www.epa.gov/safewater/lead.

UNREGULATED CONTAMINANTS - WITH NO MCLS

		DUC	MOL	DANOE	DEDODTING		
CONTAMINANTS	UNITS	PHG (MCLG)	MCL (MRDL), NL	RANGE DETECTED	REPORTING VALUE	YEAR TESTED	MAJOR SOURCES OF CONTAMINATION IN DRINKING WATER
Boron	mg/L	NA	NL=1	0.1 - 0.40	0.20	2022	Erosion of natural deposits.
Chlorate	ppb	NA	NL=800	86 - 410	215	2015	NA
Molybdenum	ppb	NA	NA	1.2 - 13.0	5.1	2015	NA
Strontium	pCi/L	NA	None	720 - 870	773	2015	NA
Vanadium	ppb	NA	NL=50	1.0 - 4.7	2.2	2021	NA
UCMR4							
Bromochloroacetic acid	ppb	NA	None	1.3 - 7.3	5.7	2019	NA
Bromodichloroacetic acid	ppb	NA	None	1.2 - 6.8	4.4	2019	NA
Chlorodibromoacetic acid	ppb	NA	None	1.4 - 3.1	2.2	2019	NA
Dibromoacetic acid	ppb	NA	None	1.3 - 3.2	2.3	2019	NA
Dichloroacetic acid	ppb	NA	None	1.7 - 17.0	12.4	2019	NA
Germanium Total ICAP/MS	ppb	NA	None	0.62 - 0.80	0.70	2019	NA
Manganese Total ICAP/MS	ppb	NA	None	0.58	0.58	2019	NA
Monobromoacetic acid	ppb	NA	None	0.40 - 0.70	0.50	2019	NA
Monochloroacetic acid	ppb	NA	None	2.2 - 3.0	2.7	2019	NA
Total HAA5	ppb	NA	None	3.8 - 34.0	24.2	2019	NA
Total HAA6Br	ppb	NA	None	7.6 - 24.0	15.6	2019	NA
Total HAA9	ppb	NA	None	10.0 - 49.0	37.0	2019	NA
Tribromoacetic acid	ppb	NA	None	2.1 - 2.7	2.4	2019	NA
Trichloroacetic acid	ppb	NA	None	0.8 - 10	7.4	2019	NA

DEFINITIONS USED IN THE CHARTS

Groundwater: All subsurface water found underground in cracks and spaces in soil, sand and rock. The area where water fills these spaces is the saturated zone, the top of this zone is called the water table.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCL) are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The level of a disinfectant (chlorine) added for water treatment that may not be exceeded at the customer's tap.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a disinfectant (chlorine) added for water treatment at which there is no known or expected risk to health. MRDLGs are set by the USEPA.

Notification Level (NL): Notification levels are health-based levels established by CDPH for chemicals in drinking water that lack MCLs.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standards (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers a treatment or other requirement which a water system must follow.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of drinking water. Secondary Contaminants are not based on health effects at MCL levels.

Surface Water: All water open to the atmosphere and subject to surface runoff such as lakes, reservoirs and rivers. Water from Lake Cachuma and Gibraltar Reservoir is treated at the William B. Cater Water Treatment Plant.

Treatment Technique (TT): A required process intended to reduce the level of contaminant in drinking water.

UCMR4: A one time sample event to establish potential new contaminants for future monitoring

Symbol "<": denotes 'less than'	ng/L: nanogram per liter (parts per trillion)
μg/L : micrograms per liter	ppb: parts per billion
mg/L: milligrams per liter	ppm: parts per million
µmho/cm: Micromhos per centimeter	pCi/L: Picocuries per liter (a measure of radiation)
6 Annual Consumer Confidence Penort - Wa	tor Quality Testing Results for 2022

NA: Not Applicable ND: Not detected at testing limit **NTU:** Nephelometric Turbidity Units None: None Required

6 Annual Consumer Confidence Report - Water Quality Testing Results for 2022 **Carpinteria Valley Water District**